If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2-18x+2=0
a = 27; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·27·2
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{3}}{2*27}=\frac{18-6\sqrt{3}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{3}}{2*27}=\frac{18+6\sqrt{3}}{54} $
| 2x+x=158 | | -2x+6x-13=4(x-2)-20 | | 3x²+2x-1=0 | | v/8-1=-7 | | 0.4(2x+1/2)=3(.2x+(-2))-4 | | 6x+2=2x−1 | | X^3+12x^2-20x=0 | | (2x+1)/(3x-2)=0.2 | | 10x-3=-4x+2(3) | | X^2-x+18/12=0 | | 6x+9/4=4 | | 32=u/3+11 | | (2x+1)/(3x-2)=-1 | | 2p×1=13 | | -4a+5-2a-9=45 | | 8x+10=3x^2+45 | | (2x-1)/(3x+2)=-1 | | 4=12-10x | | 6.6x+9.8+6.2x+7.1=103.94 | | 6(6x+6)/4=3x-1 | | 6(w+5)=-5w-14 | | 5x=7=2x=52 | | X^2-3x+10/12=2x^2-2x+8/12 | | 0.2x-23+0.2x-49=90 | | 4r=9 | | 17y-23=23y+16 | | 0.2x-23+0.2x-43=90 | | 4g=92=53 | | X^2-3x+10/12=2x^2-2x+8 | | 4(5x+3)=-68 | | 0.4x+98=90 | | 6x-x2=8 |